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A theoretical and numerical investigation of the propagation of one-dimensional waves 
in a bubbly liquid is presented. A variational formulation of the problem is used that 
yields both the linear-momentum equation and the equation that describes the oscil- 
lations of the bubbles. The compressibility of the liquid is taken into account in the 
formulation. The thermal dissipation is treated by solving the energy-balance equations 
simultaneously with the mechanical equations. Solutions are obtained by a finite- 
difference procedure and are compared to the experimental data of Kuznetsov et al. 
and Noordzij & van Wijngaarden. In  some cases quite good agreement is obtained, 
but in others substantial errors are found. It is suggested that the observed discre- 
pancies may be due to the breakup of the bubbles in the case of very large amplitude 
disturbances; the fact that the formulation does not include relative motion between 
the liquid and the bubbles; and possible non-planarity effects in the experiments. 

1. Introduction 
It is well known that the presence of bubbles of gas in a liquid greatly alters the 

character of the propagation of pressure waves through the liquid. This fact has im- 
portant implications for sonar applications (Urick 1975), for many problems asso- 
ciated with nuclear-reactor technology (Walchli & West 1964), and for certain geo- 
physical problems (Kieffer 1977). 

In  the case of steady harmonic waves of small amplitude, it has been shown both 
experimentally and analytically that the phase velocity of compressive waves drops 
and the attenuation rises as the frequency of the wave increases. These effects become 
very pronounced as the frequency of the wave approaches the natural frequency 
associated with expansional oscillations of the bubbles (Carstensen & Foldy 1947; 
Fox, Curley & Larson 1955; Macpherson 1957; Silberman 1957; McWilliam & Duggins 
1969; van Wijngaarden 1972a, b;  Medwin 1974; Plesset & Prosperetti 1977; Drum- 
heller & Bedford 1 9 7 9 ~ ) .  

The dispersion and dissipation that are observed in small-amplitude harmonic 
waves will, of course, affect the propagation of transient waves in bubbly liquids. 
Furthermore, when finite-amplitude waves are considered, non-linear effects occur 
which have been shown to have a crucial influence on the qualitative as well as the 
quantitative characteristics of the waves (Campbell & Pitcher 1958; Crespo 1969; 
Eddington 1970; Noordzij 1973; van Wijngaarden 1972a, b ,  Gel’fand et al. 1974). 
I n  the most extensive investigation that has been carried out thus far, Kuznetsov 
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et al. (1978) have shown that, depending upon the strength of the input pulse and the 
dissipative character of the medium, a transient pulse may propagate in a bubbly 
liquid in the form of a single soliton, multiple solitons, an oscillatory wave packet, an 
oscillatory shock wave, or a non-oscillatory shock wave. 

This great diversity of behaviour of transient pulses in bubbly liquids was predicted 
theoretically before it was actually observed. By writing the governing equations in 
terms ofa  perturbation of the pressure, and retaining terms through the second order, 
the equations have been shown to reduce to the Korteweg-de Vries equation (Benjamin 
1966). When dissipation is included, the second-order equations reduce to the Burgers- 
Korteweg-de Vries equation (van Wijngaarden 1 9 7 2 ~ )  Nakoryakov, Sobolev & 
Shreiber 1972, Noordzij 1973). Kuznetsov et al. (1978) showed that, for appropriate 
values of the nonlinearity and dissipation parameters, the Burgers-Korteweg-de 
Vries equation correctly predicts all of the qualitative behaviours that were observed 
in their experiments. However, they did not show comparisons of their measured 
pressure distributions with theoretical predictions. 

I n  this paper, a theoretical and numerical investigation of the propagation of 
transient pulses in bubbly liquids is presented that differs from previous works in 
several ways. Previously, the governing equations have been obtained by deriving 
the linear-momentum equation for the mixture independently of the equation for the 
expansional motion of the bubbles (van Wijngaarden 1 9 7 2 ~ ) .  I n  this paper, a varia- 
tional formulation is used that yields the coupled linear-momentum and expansional 
equations directly. The variational formulation has been applied to small-amplitude 
waves by Drumheller & Bedford (1979u, 1 9 8 0 ~ ) )  and it was shown that the linearized 
equations reduce to those that have been used previously. 

The transfer of heat between the gas and the liquid results in an important dissi- 
pation effect in the propagation of waves in bubbly liquids (van Wijngaarden 1 9 7 2 ~ ) .  
I n  previous treatments, the heat-transfer problem was solved first to  determine a 
damping coefficient, which was then used in the equations of motion. I n  this paper, 
the balance-of-energy equation is derived, and is solved simultaneously with the 
mechanical equations of motion as a coupled problem. This procedure will be shown 
to give improved agreement with the measured wave amplitude. 

I n  many applications involving wave propagation in bubbly liauids, it can be safely 
assumed that the liquid is incompressible owing to  the relatively greater compressi- 
bility of the gas. However, in some cases of shock-wave propagation, the compression 
wave that propagates through the liquid (followed by the much-slower disturbance 
associated with the compression of the bubbles) will be of interest. I n  this paper the 
compressibility of the liquid is included in the formulation, and an  example is presented 
that illustrates this effect. (A further consideration was that the algorithm that was 
used t o  solve the governing equations required that the liquid be treated as com- 
pressible.) 

Previous numerical solutions for transient pulse propagation in bubbly liquids have 
been based on the second-order equations. I n  this investigation the general nonlinear 
forms of the equations have been used. Solutions for the pressure distributions caused 
by transient pulses were determined by the method of finite differences and compared 
to the experimental distributions reported by Kuznetsov et al. (1978) and Noordzij & 
van Wijngaarden (1974). 
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2. Theory 
Consider a mixture of two constituents, a liquid and a gas. The mass density of the 

t t h  constituent (6 = f for the liquid and [ = g for the gas) will be denoted by pC. The 
volume fraction of the (th constituent will be denoted by &, where 

The partial density pt, the mass of the Cth constituent per unit volume of the mixture, 
is related to the mass density and the volume fraction by 

Pg = @[. (2) 

p,+p,divv = 0, (3) 

The equation of conservation of mass for each constituent is 

where v is the velocity of the mixture, and a dot denotes the material derivative: 

a 
at 

pt = -pt+v.gradpS. 

Alternatively, (3) can be written 
P[ J = Pt0j 

where J is the Jacobian and pto is the partial density in a reference configuration. 
When the equations (5) for ( = g and [ = fare  summed, the equation of conservation 
of mass for the mixture 

is obtained, where p = x p 5 .  
(6) P J  =Po 

5 
The variations of the velocity and the Jacobian are (Finlayson 1972) 

SV = 8k, SJ = JdivSx,  (7) 

where x is the position vector of a material point of the mixture. The variation of a 
function Y(x, t )  holding x fixed is 

6Y I x  = S\E" - Sx . gradY. (8) 

Hamilton's extended principle can be written 

where t ,  and t ,  are arbitrary times, T and U are the kinetic and potential energies, and 
8W is the virtual work. The governing equations will be derived by applying (9)  to a 
material volume v of the mixture (Bedford & Drurnheller 1978; DrumhelIer & Bedford 
1979a, b ,  1 9 8 0 ~ ) .  

The kinetic energy consists ofthe kinetic energy of translation plus the kinetic energy 
of the liquid that is displaced radially as the bubbles expand or contract. The latter 
energy will be evaluated by assuming that the radial velocity distribution in the 
neighbourhood o f a  given bubble, relative to the bubble, can be approximated by the 
velocity distribution for a single bubble in an unbounded incompressible fluid, 
v, = (R/r)2 .&, where v, is the radial velocity of the liquid at a distance r from the centre 
of the bubble, R is the bubble radius, and R = dR/dt  (van Wijngaarden 1 9 7 2 ~ ) .  This 

12-2 
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assumption requires that the distance between bubbles be large compared to  R. 
Furthermore, since the liquid is assumed to  be compressible in t,he present analysis, 
this assumption also requires that changes in the liquid density be small over distances 
that are of the order of the distance between bubbles. 

Since $;rrR3pg is constant, the kinetic energy of the liquid surrounding a single bubble 
is approximated by - 

+jp,v,24m2dr = gr 2 R5Pf4  =zpg. (10) 
Pg 

By multiplying (10) by the number of bubbles per unit volume $g/$7rR3, to  obtain 
the kinetic energy per unit volume associated with bubble oscillation, the total 
kinetic energy of the mixture contained in a material volume v can be written as 

T = IV(+pv.v+- 1 R2$gPr T p g )  +2 dv. 
6 iz, 

The virtual work is written 

The term is the pressure of the Cth constituent, q5,&SPg/j?, is a virtual-work term 
which will be used to  introduce the bubble damping, fs is t-he external body force 
density acting on the 6th constituent, and T is a specified traction vector that  is 
assumed to act upon a portion s' of the surface s of v. (It is ssumed that the displace- 
ment of the mixture is specified on the remainder of s, so that Sx = 0 except on s'.) 
Work expressions for all of the forces acting on the mixture are given in (12). Conse- 
quently SU = 0. 

Equations (1) and (5) will be introduced into the variational principle (9) as eon- 
straints by using the method of Lagrange multipliers. The multipliers are denoted by 
h and ,ac, respectively. Thus, Hamilton's extended principle for the mixture is written 

The resulting equations of motion obtained from (13)) corresponding to the variations 
ax, @,, @ f 7  and d$c, are? pi. = pf - grad (x ,I+ J ) ,  (14) 

5 

t In  evaluating the variations in ( 1  3) it  must be noted that R depends upon P,. It must also 
P P 

be noted that since v is a material volume 8 pLYdv = J ptSY"dv (see Drumheller K E  Bedford 

1980b). The variations are assumed to vanish at  t = t ,  and t = t,. 
Jv V 
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and the boundary condition on s' is 

T = - xpus Jn ,  
5 

where n is an outward unit vector normal to  s, and pf = I ;p5f5.  
5 

By using (17) to eliminate pt J from (14)-( 16) and (IS),  they can be written 

pi. = pf -grad& (19) 

T = - A n  on s'. (22) 
Equation (19) is the linear-momentum equation, (20) is the expansional equation, 

and they are coupled through (21). When (20) is written in terms of R, it becomes 

Note that when the liquid is incompressible (Pf = const.), the bubble damping term 
Q is assumed to be zero, and the bubble concentration is negligible (#,/#, -+ 0), (23) 
reduces to the Rayleigh-Plesset equation (Plesset & Prosperetti 1977). Equation (23) 
is also similar in form to the relation proposed by Nigmatulin (1979) in which empirical 
corrections for bubble concentration are included. 

For the particular examples considered in this work, the #g/#r correction to  the 
second term in (23) is negligible; however, the effects of p',/Pf in the third term in (23) 
are significant. This term results in the propagation of pressure waves in the liquid 
component. As will be shown, these pressure waves result in negligible density varia- 
tions over a distance equal to the bubble spacing. Consequently, the assumptions 
leading to (10) are not violated. 

Dissipation mechanisms that are present in dynamic processes in bubbly liquids 
include viscous dissipation in the liquid, irreversible transfer of heat from the gas to 
the liquid, also - particularly a t  frequencies above the resonance frequency of the 
bubbles - the radiation of compressional waves in the liquid owing to the oscillations 
of the bubbles (Poritsky 1952; Devin 1959; van Wijngaarden 1972a), and evaporation 
and condensation of any liquid vapour that is in solution with the gas constituent that 
forms the bubbles. 
. The last effect has been ignored by previous authors. As in the present case, these 
authors studied systems in which the liquid component was water. Neglecting this 
effect seems justified since accurate predictions of both sound speed and attenuation 
of time-harmonic pressure waves can be achieved without inclusion of this effect 
(Drumheller & Bedford 1979 a) .  The remaining mechanisms have previously been 
included in studies of wave propagation in bubbly liquids by evaluating an effective 
damping coefficient Q in (23) (van Wijngaarden 1972a; Noordzij & Wijngaarden 
1974). In  this paper, the viscous-dissipation and radiation mechanisms have been 
treated in this way. However, in order to obtain agreement with the experimental 
results, it was found to  be necessary to treat the heat-transfer mechanism in a more 
elaborate way. 
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Consider the compression of a bubbly liquid. The compression causes the temperature 
of the gas in the bubbles to rise above the temperature of the surrounding liquid. As 
a result, heat flows from the bubbles to the liquid. Since this process is not completely 
reversible, some of the mechanical energy required to compress the bubbly liquid is 
not recoverable. This is the mechanism of the dissipation. 

Since the thermal damping is associated with the temperature of the gas and liquid 
and the flow of heat between them, energy equations will be introduced into the theory 
that will allow for different temperatures and energy exchange between the liquid and 
the gas (Crespo 1969; Drumheller & Bedford 1980a). 

The energy equations will be obtained by the method described by Drumheller & 
Bedford (1979b). By noting that the definition of virtual work introduced in (12) must 
also define the mechanical-work expressions that should appear in the energy equa- 
tions, the energy-balance relationships can be written 

(24) 

( 2 5 )  

p' 
Pg&,  = # g ( P g - & ) ~ + + , ~ g + u  

pfgf  = #iPi=-divqi+pfrf-u,  Pi 

P g  
- 

Pf 

where Et is the specific internal energy of the Cth constituent, rf; is the specific external 
heat supply (by radiation, for example), u is the energy exchange between constituents, 
and qf is the heat flux within the liquid. The heat flux qf should not be confused with 
the heat flux between the gas and the liquid, which is represented by u. (The heat flux 
q, within the gas will not be included because the bubbles do not touch and thus do 
not provide a path for direct heat transfer between bubbles.) 

3. Constitutive assumptions 

bubbles is assumed to be an ideal gas so that 
The heat flux qf and the external heat supplies rt will be neglected. The gas in the 

Pg = RuPgT,, (26) 

where Tg is the absolute gas temperature and R, is the gas constant. The specific 
internal energy is assumed in the form 

E,  = CIlPT,, (27) 

where C,, is a constant denoting the specific heat at constant volume of the gas. Thus 
the energy equation for the gas, (24), becomes 

- 

(28) 
P 

PgG, p ,  = $ g V g  - &) 2 + u. 
PP 

The liquid constituent will be assumed to obey the pressure-density relation 

where K is the liquid bulk stiffness and Pfr is a reference density. The time derivative 
of the specific internal energy is assumed to be of the form 

= Pf3+C,,Tf,  Pf (30) 
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where C,, is a constant denoting the specific heat a t  constant volume of the liquid and 
Ti is the liquid temperature. When (30) is substituted into the energy equation for the 
liquid, (25), one obtains 

(31) p1C& = -u. 

To complete the material descriptions, constitutive expressions for Q and u are 
required. The damping term Q has been evaluated in the present work by using the 
acoustic approximation described by Noordzij & van Wijngaarden (1974). The ther- 
mal damping part of the term was of course not included. 

An expression for u was obtained by considering the local heat conduction in the 
neighbourhood of a single bubble. The expression was derived from the solution for 
the temperature field in and around a bubble whose pressure is oscillating with a 
harmonic frequency w.7 After removal of the harmonic time dependence, the solution 
of the linear heat-conduction equation gives the distribution of local temperature 0 

R sinh (i*agr) 
r sinh (i*a,R) ' 

inside the bubble as 
0 - Tg = - (0, - T ) 

where 0, is the temperature at  the bubble surface (Drumheller & Bedford 1979a, 
equation (56)). The temperature distribution outside the bubble is 

(33) 
R 
r 

0-T, = -(0,-Tf)exp[i*a,(R-r)], 

(Drumheller & Bedford 1979a, equation (61)). The parameters a, are given by 

where C,, and k, are the specific heat at  constant pressure and the thermal conductivity 
of the 6th constituent, and i = 1/ - 1.  

At the bubble surface, the temperature and heat flux must be continuous. By 
applying these two conditions to  (32) and (33),  the following expression for 0, is 
obtained: 

where a! = &,Rcotanh(i&a,R)- 1,  (36) 

P = i*a,R+ 1. (37) 

k f 

Then the heat flux across the bubble surface is 

(38) P(0," - Tf). 

The magnitude of this quantity, when multiplied by the surface area of an individual 
bubble and the number of bubbles per unit volume, gives u as 

t This approach is valid only for small-amplitude oscillations since a moving boundary-value 
problem is not solved. This approximation may result in significant effects on the computed 
thermal damping of finite-amplitude waves. 
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This expression is complete provided an estimation of frequency w is known. I n  
the present analysis the bubbly liquid does not in general exhibit a harmonic response, 
but rather a transient response, which can be regarded as a spectrum of harmonic 
components. The expression for w will be chosen to estimate the value of the dominant 
frequency in this spectrum. 

The variable pE is used to estimate a value for w a t  each position and time by the 
relationship 

@ = - -  2 P P  

IPa I, I a 

The parameter pa,, is the initial value ofp,. At any given time 5, is viewed as a maximum 
value of the dominant harmonic. Therefore (2/7r) /$,I represents the magnitude aver- 
aged over one-half of an oscillation. This averaged value is used in (40). Equation (40) 
allows the possibility of infinite values of w .  This limit clearly corresponds to adiabatic 
behaviour. 

As noted previously, the inclusion of the energy relations (24) and (25) is an alter- 
native approach to modelling the thermal damping. The conventional approach is to 
add an acoustical approximation term to the definition of the damping term Q .  This 
approximation is achieved by constructing a separate solution to a, system of energy 
equations that are similar to those presented in this work. One of the major differences 
in comparison with the present approach is that (40) is replaced by the assumption 
that w is equal to the resonance frequency of the bubble at ambient conditions. 

4. Numerical analysis 
Equations ( i ) ,  (2),  (5), (6), (19)-(21), (26), (28)-(30), (35), (37) and (39) provide a 

system of equations in the variables &, A, p6, p, V, &, 4, T f ,  u, Ow, and o. These equa- 
tions have been solved by using the one-dimensional explicit Lagrangian finite- 
difference wave-propagation code WONDY IV; the differencing procedure that is used 
is described by Lawrence & Mason (1971). 

Briefly, the programme is designed to solve (6) and (19) together with an equation 
of state for A. In  solving the bubbly liquid problem, the remaining equations have been 
treated as equations of state. Thus the programme used (6) and (19) to update p and 
v from a given time to the next time step. The equations of state were then solved 
simultaneously to determine &, A, ps, p6, P6, Ts, u, Ow and w a t  the next time step. In  
doing so, ( Z O ) ,  (28) and (30) were integrated numerically by using an auxiliary ordinary 
differential-equation solver STEP (Shampine & Gordon 1974). 

Normally, the finite-difference equations contained in the programme WONDY IV 
also include an artificial viscosity. This term is designed to smooth out wave profiles 
and eliminate the possibility of shock-wave discontinuities. I n  the present investiga- 
tion this artificial smoothing has not been required. It is replaced by the physical 
smoothing process represented by the bubble response (20). Thus the results discussed 
in 9 5 were obtained from calculations without artificial viscosity. These results were 
also unaltered by refinements in the mesh spacings and time step. 
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FIGURE 1. Pressure profiles in bubbly water during expansion; time = 4.1 p. 

5. Results 
A solution will first be presented that illustrates the effects of the compressibility 

of the liquid on the early-time response of a bubbly liquid to a transient excitation. 
The problem models a mixture of air bubbles and water that occupies the volume 
between two vertical infinite parallel surfaces that are 10 mnl apart. The bubbles are 
of 1 mm radius and initially occupy 10 yo of the mixture volume. The initial pressure 
is set equal to 2-0 MPa. At time zero the right-hand surface is assumed to  move to the 
right such that the mixture is subjected to a boundary pressure of 0.1 MPa. The 
opposite surface is held fixed. 

If the liquid were considered to be incompressible, a single pressure-release wave, 
propagating a t  the sound velocity based on the static compressibility of the mixture 
U,, would travel away from the right-hand wall. For this example, the value of U, 
is 180 m/s. Based on this velocity, the mixture at the fixed wall would not respond to 
the pressure drop until 55 ,us of time had elapsed. 

I n  contrast to this behaviour, the response including the compressibility of the 
liquid that is predicted by the present theory is illustrated in figures 1 and 2. The 
pressure profiles for both pi and Pg are shown a t  two different times.? I n  figure 1 the 
pressure-release wave has propagated to the position 3-7 mm a t  a rate of 1-5 km/s, 
the sound speed in the liquid. I n  response to  the pressure drop in the liquid, the bubbles 
have expanded slightly, resulting in a small pressure drop within the bubbles. This 
slight expansion of the bubbles in turn repressurizes the stiff liquid to form a broad 
dome behind the pressure-release wave. At the later time shown in figure 2, this 
pressure dome has grown larger, and owing to the large inertial effects associated with 

t It must be noted that the assumption that variations in the density of the liquid must be 
small over distances of the order of the distance between bubbles is violated in this example. 
This fact could cause error in the distribution of e, but the qualitative features of the example 
should not be altered. 
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FIGURE 2. Pressurc profiles in bubbly water during expansion; time = 6.05 ps. 

the expansion of the bubbles, the pressure in the liquid behind the release wave has 
increased to a value greater than the original pressure. At a slightly later time ( 7  ps) 
the release wave reaches the fixed wall. Thus in this case the total volume of the mixture 
responds to the original pressure drop after 7 p s  instead of after 5 5 p s  as in the in- 
compressible liquid assumption. 

While the previous calculations demonstrate significant differences due to  the 
inclusion of liquid compressibility, there are no early-time experimental data with 
which comparisons can be made. I n  the case of the late-time response, comparisons 
can be made with the data of Kuznetsov et al. (1978) and Noordzij & van Wijngaarden 
(1974), which were based upon measurements of the pressure profile of a compres- 
sion wave propagating down a tube which contained a bubbly water-glycerine 
solution. 

The results of Kuznetsov et al. (1978) will be considered first.? The pressure distur- 
bance was generated by a pressure chamber mounted above the bubbly solution. 
Two series of tests were conducted, one using carbon dioxide bubbles and one using 
helium bubbles, in order to  obtain a large range of nonlinear and dissipative effects. 

t The authors have discovered two editorial errors in thc paper by Kuznetsov et al.  (1978) 
x\hicli need to be brought t o  the attention of others who s ish to use that important work. In 
their table 1, the column labelled APo (the initial amplitude of the pressure perturbation) 
actually contains the valuos of AP, (the measured amplitude of the pressure perturbation), as 
can be verified fiom their figure 10. In addition, their equation ( T ) ,  which reads 

which can be verified by going through the derivation of their equation (9).  When the corrected 
equation for uo(E) is used, the values of the parameter ~7 that they give can be verified approxi- 
mately using the data which they quote. However, the authors have been unable to verify the 
values of the Reynolds number Re that they quote. The latter discrepancy remains unresolved. 
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FIGURE 3. Comparison of theory to case 3 in Kuznetsov et aE. (1978) ; 
corrected APo = 0.35/1.28 = 0.27. -, theory; - - -, data. 

The bubbles had a nominal diameter of 1 mm and a nominal volume concentration of 
1 percent. 

For the most part, the material properties that were necessary for the computations 
were listed by Kuznetsov et al. (1978). Exceptions included the bulk modulus of the 
liquid and the specific heats of the gases. The values that have been assumed are 
K = 2.66 GPa, C,, = 870.6 J/kg K (for carbon dioxide), and C,, = 5133.3 J/kg K 
(for helium). The thermal conductivities of the gases could be computed from the 
specific heats and the listed values of the thermal diffusivities. 

Calculations were made for all the carbon dioxide experiments and for the short- 
propagation-distance helium experiments. The results are compared to the experi- 
mental data in figures 3-10.? These figures are plots of pressure versus time after 
impact. Since absolute time scales were not included with the data, the data were 
time-shifted until the peak pressures coincided. The theoretical results contain only 
plots of the gas pressure. The liquid pressure is not plotted. The computed liquid- 
pressure profiles consisted of very rapid oscillations about a value equal to the gas 
pressure. The pressure transducers that were used in the experiments would not have 
resolved these oscillations. Consequently the data has been compared to the computed 
profile of the gas pressure. 

Figures 3-5 compare the calculations to the data for the propagation distance of 
0.6 m with carbon dioxide bubbles. These figures correspond to cases B, E ,  and F in 
Kuznetsov et al. (1978) which produced three different wave-propagation profiles; a 

t The large times required by these calculations necessitated the use of a continuous re- 
zoning technique whereby the grid spacing was constantly altered so as to concentrate mesh 
points near computationally active regions (Lawrence CQ Mason 1971). Thus, the portions of the 
tube which were at  uniform pressures contained large mesh spacings and the portions of the tube 
with large pressure gradients contained mesh spacings as small as 0.5 mm. 
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FIGURE 4. Comparison of theory to case E in Kuznetsov et aE. (1978) ; 
corrected AP, = 0.29/0.61=0.48. -, theory; - - -, data. 
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FIGURE 5 .  Comparison of theory to case F in Kuznetsov et al. (1978) ; 
corrected AP0 = 0.035/0.28 = 0.13. -, theory; - - - , data. 
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FIGURE 6. Comparison of theory to case C in Kuznetsov et al. (1978) ; 
corrected AP,, = 0.945/0.34 = 2.78. -, theory; - - -, data. 

shock wave, a single soliton, and a wave packet.? The agreement between theory and 
experiment is seen to be quite good in all three cases. 

Case E ,  figure 4, was also compared to  a calculation in which thermal damping was 
modelled by the acoustic approximation discussed in 3 4 (van Wijngaarden S972a). 
I n  that calculation almost no attenuation of the peak amplitude was observed. 

Figures 6 and 7 compare theory and experiment for the longer propagation distance 
of 1-4m with carbon dioxide bubbles. Here the comparison shows greater error. 
Figure 6 corresponds to case G in Kuznetsov et al. (S978), where the wave propagation 
profile wa,s characterized as a multiple soliton. The theoretical results do exhibit the 
solitary-wave structure suggested by this characterization; however, the experimental 
data are more objectively characterized as a wave-packet form, in that the oscillations 
are not as distinctly separated as in the calculations. 

Kuznetsov et al. (1978) stated that in some of their experiments atomization or 
breakup of the bubbles occurred. Since the pressure perturbation in case C was much 
larger than in the previous experiments, atomization of the bubbles may have occurred 
in this case. The calculations of course would not account for this effect. 

The same discrepancy is seen in figure 7 (case D). Again, higher pressures were used; 
however, in this case the theory does exhibit the two-soliton description assigned to  
this experiment. 

I n  figures 8-10 the results are compared to the data for helium bubbles, correspond- 
ing to cases 13a, 14a and 15a. These results were obtained a t  the 0.6 m data station. 
The qualitative agreement between the calculations and the data is good; however, 
the theory underpredicts the period of the oscillation behind the wave front. High 

t These classifications are based on the perturbation results presented by Kuznetsov e l  al. 
(1978). 
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pressures were used in these experiments; however, the data in these cases does not 
seem to exhibit any evidence of possible bubble breakup. 

Figures 11 and 12 are comparisons with the data of Noordzij & van Wijngaarden 
(1974). I n  these experiments a pressure pulse was generated by first covering the top 
of the tube with a diaphragm and partially evacuating the interior of the tube. The 
diaphragm was then broken. Consequently the pressure-pulse amplitudes used in 
these experiments are much lower than in the previous experiments. I n  these experi- 
ments the bubbles consisted of air. 

Again, only the computed gas-pressure profiles are plotted. Figure 11 shows the 
comparison a t  a propagation distance of 0-2 m. Both the quantitative and qualitative 
agreement are seen to be poor. Two theoretical calculations are shown. The first 
includes the dissipation mechanisms described in this work. The second excludes all 
damping terms. Even in the complete absence of damping the calculations do not 
exhibit the oscillations that appear in the data. 

For the air-water system and the low pressures used in these experiments, the 
perturbation analysis presented by Kuznetsov et al. (1978) suggests that the results 
of this experiment should correspond to  the theoretical profile that was obtained. 
It is worth noting that these data were collected a t  a point that was slightly less than 
four tube diameters from the surface where the pressure pulse was applied. Any lack 
of planarity in the wave could result in an oscillation with a period equal to  two transit 
times across the tube diameter. The tube diameter in this case was 55 mm, and the 
wave-propagation speed was 68 m/s, which corresponds to a period of 1.6 ms. This 
is very close to  the experimentally observed oscillation peri0d.t 

t The authors recommend that future experiments be designed so that the resonance period 
of the bubbles differs significantly from the time required for the wave to propagate across the 
diameter of the tube. 
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Noordzij & van Wijngaarden (1974) defend the appearance of these oscillations in 
their data by citing the work of Crespo (1969). Crespo's theoretical calculations, 
which were based on incompressible-liquid behaviour, do exhibit oscillations on a 
time scale which is compatible with their experimental data. However, his calcuIations 
were for much larger amplitude waves, with pressure ratios 50 times greater than the 
experiment. His analysis for the case of weak pressure waves did not predict oscilla- 
tions behind the wave front. There is apparently no direct conflict between the present 
calculations and those of Crespo in that neither calculation predicts large oscillations 
a t  low pressure amplitudes. Consequently, the suggestion that the experimentally 
observed oscillations are predicted by calculation appears to  the authors to be open 
to question. 

Figure 12 presents the comparison for the 2.5 m data station. Here no oscillations 
are seen in either the data or the calculations; however the data exhibits an additional 
damping effect not occurring in the calculations. Noordzij & van Wijngaarden attribute 
this additional damping to the effect of relative motion between the liquid and the 
bubbles, which was not modelled in the present investigation. 

This work was supported by the U.S. Department of Energy under Contract DE- 
AC04-76-DP00789. 
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